

CityGML and 3D modelling

Dave Capstick, Ordnance Survey Research Department

Introduction

- Why is cityGML necessary
- CityGML development who is responsible?
- Ordnance Surveys interest
- 3D modelling basic concepts
- CityGML the basics
- CityGML in detail
 - Individual themes buildings, DTMs
 - Other modelling concepts TICs, Closure surfaces, topology etc
- OGC Standards & Web Services
- Extending cityGML ADEs and Generic Objects/Attributes
- Software
- Example datasets
- Conclusions

Why is CityGML necessary?

- Increasing interest in 3D
- Research shown a definite need for 3D
- Standards led approach

Responsibility for CityGML

- Origins are with the Geodata Infrastructure North Rhine-Westphalia – 6 SIG WG
- Special Interest Group 3D (SIG3D)
 - Open group >70 members
 - Members range from industry, government, municipalities and academia
 - Participants from Germany, Austria, Switzerland and UK
 - Technical leads are Thomas Kolbe and Gerhard Gröger

SIG3D Members

Municipalities

- Berlin
- Hamburg
- Köln
- Dusseldorf
- Bremen
- Essen
- Wuppertal
- Bochum
- Stuttgart

Administration

- State mapping agencies (Germany)
- Ordnance Survey (GB)

Companies

- T-Mobile
- Bayer Industry Services
- Rheinmetall Defence
- 3D Geo
- CPA Geoinformation
- Con Terra
- •GIStec
- Citygrid
- Cybercity
- Snowflake Software

Science/Academia

- Univ of Bonn
- Univ of Berlin
- Univ of Potsdam
- Univ of Hannover
- Univ of Dortmund
- Univ of Munster
- Fraunhofer Inst. for computer graphics, Darmstadt
- Helmholtz Research Centre, Karlsruhe
- Univ of Applied Sciences, Stuttgart

Why is Ordnance Survey interested in cityGML?

- OS have had an interest in 3D for a number of years
- Customer research high level of interest
- OS competes with commercial organisations
- Thought leader
- Extensive research at OS
 - Requirements from customers
 - Requirement for a 3D standard

3D modelling – an introduction

- 3D Modelling can be applied to several different domains/industries
 - Computer graphics visualisation
 - CAD/BIM (IFC)
 - GIS

CityGML and BIM / IFC

CityGML – the basics

- Application independent topographic information model for virtual 3D city models
 - Basic set of features defined
 - Standardised meaning/interpretation of feature types (UML/GML)
- Comprises different themes buildings, relief, water body, vegetation, landuse, appearance, city furniture, generic objects etc
- Data model (UML) ISO 191xx standard family
- Exchange format
- Realised as a GML3 application schema
- Applications city planning, architectural design, environmental, telecoms, disaster management, estate management, etc
- August 2008 cityGML version 1.0.0 accepted as an official OGC standard

CityGML – goals

- Establish a high degree of semantic interoperability
 - Enable multifunctional usage of 3D models
 - Definition of a common information model
 - Potential for 3D geo database (similar to more traditional 2D)
- Representation of observed 3D topography
 - Explicit 3D shapes surfaces and volumes
 - Identification of most relevant feature types useful for variety of applications
- Suitable for use in SDI
- Simple to use

Multi-scale modelling - Level of Detail

- LOD 0 Regional Model 2.5D Digital Terrain Model
- LOD 1 City model block model, no roof structures
- LOD 2 City model roof structures, optional textures
- LOD 3 Site model detailed architectural model
- LOD 4 Interior model Walkable interior spaces

More detail – Thematic modelling

The building model

- Coherent aggregation of spatial and semantical components
 - (recursive) composition of building parts
 - Thematic surfaces roofs, wall etc
 - Building installations dormers, stairs, balconies (from LOD2)
 - Openings doors, windows (from LOD3)
 - Rooms and furniture (only LOD4)
- Components contain relevant thematic attributes
 - Name, class, function, usage (dates, roof type, address)
 - Number of storeys above/below ground
- Surface appearance textures and colours

The building model

Example – Building model at LOD3

Digital terrain models

DTM at each LOD can be composed of –

- Triangulated Irregular Network (TIN), grids, 3D breaklines and 3D Mass points
- Each DTM component can be restricted to be valid in a specific region validity extent polygon

Other concepts - Support for spatial homogenisation -Terrain Intersection Curve

Often a poor correspondence between terrain and features on the terrain

- Leads to features floating/sinking below terrain surface
- Terrain Intersection Curve, TIC, ensures matching
- DTM may be locally warped to fit the TIC

Other concepts - Closure surfaces

Open ended objects may exist – buildings, terrain

- Closure surface concept seals 3D objects
- Allows computation of volumes

Other concepts

•Explicit linking – every citygml object can have an arbitrary number of links to external resources

- •Appearance model based on X3D, Collada
 - Models textures and colours
 - Not restricted to visual data can also represent IR radiation, noise pollution etc
 - Data for each surface geometry (can have multiple representations)

Other Concepts - Topology

- Does not use complex topology that exists in GML3
- Explicit modelling sharing of geometry between features
- Xlinks geometries have Ids referenced using href attribute

Web Services

- CityGML based on GML3 combines with other OGC standards
 - WFS, CS-W, WCTS and WPS especially
- Examples
 - OGC Web Services 4 (OWS-4) Testbed showed how cityGML/IFC
 3D data can be used in disaster management
 - Statewide 3D SDI with cityGML NRW. Noise modelling
 - SDI Berlin city urban planning, civic participation etc

Software supporting cityGML

- 3D Geo LandXplorer CityGML Viewer (free)
- University of Bonn: Aristoteles Viewer (free)
- Snowflake Software: Go Loader & Publisher WFS
- Interactive Instruments: WFS
- Oracle 11g: 3D data types and CityGML loader
- Tech. University of Berlin: Oracle schema/loader/updater
- •Safe Software FME reader (writer in development)
- ESRI ArcGIS 9.3 Interoperability Extension
- Bentley: Work in progress
- Autodesk: Work in progress

Extending CityGML

- 2 methods for extending basic functionality of cityGML
 - Generic Objects/Attributes
 - Application Domain Extensions
- Generics allow extensions during runtime i.e. no additions to XML schema
 - Classes GenericCityObject & GenericAttribute
 - Only used for features not in cityGML model
 - Issues
 - May occur arbitrarily no formal specification, reduces semantic interoperability
 - Naming conflicts may occur

Application Domain Extensions

- CityGML Base information model. Specific applications need extra information. E.g. Environmental simulations, Utility networks, etc
- Types of domain extension
 - Extend existing cityGML feature types
 - Extra spatial/non spatial attributes
 - Extra relations/associations
 - Definition of new feature types
 - Preferably based on cityGML base class CityObject
 - Each ADE requires its own XML schema definition

Application Domain Extensions

Examples - Noise simulation using Noise ADE

Examples – Southampton, Ordnance Survey

Large models: 55 000 detailed buildings

Image: Reality maps, Berlin 3D

(>50km2)

र तन्त्र

Conclusions

- CityGML is a Geospatial Information model (based on ISO191xx), which can be mapped to a database environment
- Exchange format for virtual 3D city and regional models (realised as a GML3 Application schema)
- CityGML represents geometry, topology, **semantics** (esp. important) and appearance
- Can be considered as a rich 3D information source for generation of 3D visualisations
- Not just a tool for visualisations semantics
- Model contains most important core concepts these can be extended for particular applications
- Recently accepted as OGC standard and is creating high level of interest software being developed, applications etc

Any questions?

Dave Capstick Ordnance Survey Romsey Road SOUTHAMPTON United Kingdom SO16 4GU

Phone: (+44)023 80792802

Email: dave.capstick@ordnancesurvey.co.uk Website: www.ordnancesurvey.co.uk