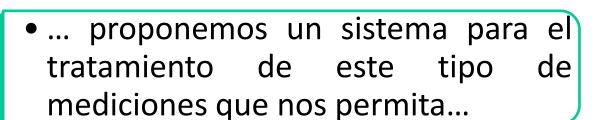
Monitorización de datos de calidad de aire

Sergi Trilles Oliver Laura Díaz Sánchez Joaquín Huerta Guijarro



Índice

- Introducción
- Motivación
- Contribución
- Área y datos de estudio
- Arquitectura del sistema
- ¿Qué mejora el sistema?
- Ejemplo de uso
- Conclusiones

Introducción

 A partir de las mediciones de Cal. del Aire, Condiciones meteorológicas...

 ... conocer a tiempo real las condiciones de una ubicación concreta

3

Motivación

Contaminación

Smart Cities (**GIS**, **medio ambiente**, energía, movilidad, participación)

Contribución

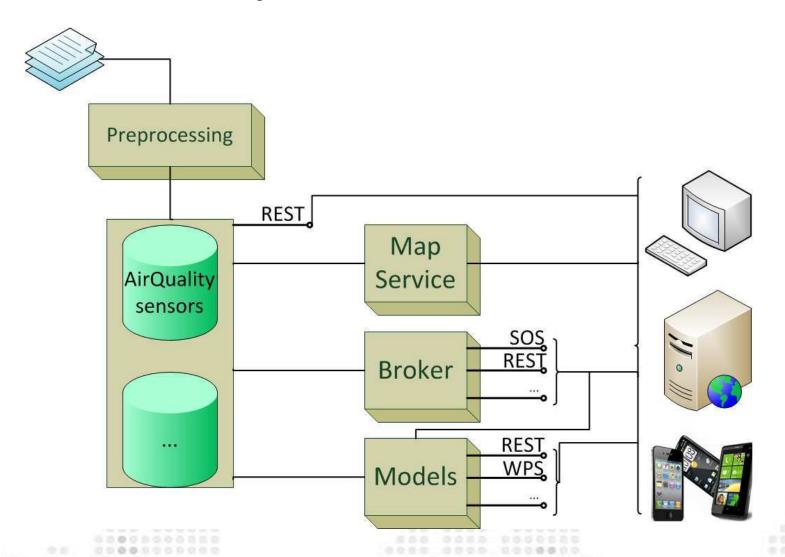
- Integración de datos heterogéneos
 - Datos climáticos
 - Datos calidad del aire
 - •
- Mejorar la interoperabilidad
 - Acceso más estructurado
 - Servicios Rest / Servicios OGC –SOS

Área y datos de estudio (I)

Resolución espacial:

61 estaciones:

- 24 en Castellón
- 24 en Valencia
- 13 en Alicante


Resolución temporal: cada hora Actualización de los datos con un retardo de 2/3 horas

Área y datos de estudio (II)

Elementos contaminantes:	Parámetros meteorológicos:
SO ²	Vel/Dir del viento
NO	Humedad relativa
NO ²	Radiación solar
NOx	Presión atmosférica
СО	Precipitación
O^3	
Partículas en suspensión (PM10, PM2.5 y PM1)	
Arsénico	
Níquel	
Cadmio	
Plomo	

Arquitectura del sistema

¿Qué mejora el sistema?

- Reunir en un único punto de entrada el acceso a varias fuentes heterogéneas
- Acceso desde cualquier dispositivo que tenga acceso a Internet (aplicación de escritorio, página web o mediante clientes móviles)
- Criterios de filtrado
- Diferentes formatos y formas de salidas
- Operaciones para interrelacionar fuentes, visualizarlas y generar índices o predicciones de concentraciones contaminantes en una zona

Ejemplo de uso

Conclusiones

- Mejora de la interoperabilidad y el acceso a este tipo de datos
- Capacidad para añadir diferentes fuentes de datos
- Mejora la integración con otras fuentes, meteorológicas, demográficas, hacia la implementación de ciudades inteligentes
- Demo de uso mediante un cliente móvil
- Publicación y accesos en/a servicios interoperables
- Trabajo futuro, implementar un bróker de acceso para mejorar interoperabilidad a los modelos de visualización, propagación y predicción

¿Preguntas?

