
W W W . R E F R A C T I O N S . N E T

WMS Performance Tests!WMS Performance Tests!

Mapserver & GeoserverMapserver & Geoserver

FOSS4G 2007FOSS4G 2007

Presented by

Brock Anderson and

Justin Deoliveira

Shapefiles vs. PostGIS,

Concurrency,

and other exciting tests...

W W W . R E F R A C T I O N S . N E T

Presentation OutlinePresentation Outline

• Goals of testing.

• Quick review of WMS.

• Description of the test environment.

• Discussion of performance tests and

results.

• Questions.

W W W . R E F R A C T I O N S . N E T

GoalsGoals

1. Compare performance of WMS GetMap requests in

Mapserver and Geoserver.

2. Identify configuration settings that will improve

performance.

3. Identify and fix inefficiencies in Geoserver.

We do not test stability, usability, etc.,

We do not test styling or labelling.

We focus on vector input.

*

W W W . R E F R A C T I O N S . N E T

Keeping the tests fairKeeping the tests fair

• Not an easy job!

• We tried to understand what each server does
under the hood to ensure we're not accidentally
performing unnecessary processing on either
server.

W W W . R E F R A C T I O N S . N E T

Web Map Service (WMS)Web Map Service (WMS)

WMS

User

http://server.org/wms?

request=getmap&

layers=states,lakes&

bbox=-85,36,-60,49&

format=png&...

A Map

W W W . R E F R A C T I O N S . N E T

Test EnvironmentTest Environment

Shapefiles

Mapserver

4.10.2

Server ComputerClient Computer

JMeter

2.2

WMS requests

Data

Additional Server Specs: Dual core (1.8Ghz per core). 2GB RAM. 7200RPM disk. Linux. PostgreSQL
8.2.4. PostGIS 1.2.

Apache 2.2.4 (with mod_fcgi)

Geoserver

1.6 beta 3

Tomcat 6.0.14

WMS requests

V
e
c
to
r D

a
ta

W W W . R E F R A C T I O N S . N E T

Test #1: PostGIS vs. ShapefilesTest #1: PostGIS vs. Shapefiles

• Two Data Sets:

3,000,000 Tiger roads in Texas

10,000 Tiger roads in Dallas, Texas

• Both data sets are in PostGIS and shapefile format.

• Spatial indexes on both data sets.

• Mapserver and Geoserver layers point at the data.

• Minimal styling.

• JMeter issues WMS requests to fetch ~1,000

features, limited by the 'bbox' parameter.

And the results are...

W W W . R E F R A C T I O N S . N E T

Test #1: PostGIS vs. ShapefilesTest #1: PostGIS vs. Shapefiles

Notes: This test uses two different data sets: one with 3 million features, the other with 10,000. Each
bar is an average of 30 sample WMS requests, each using a different bounding box to fetch and draw
appx. 1000 features (+/- 15%). The same 30 requests are executed for each scenario. One request at a
time (no concurrency). Mapserver and Geoserver use the same data. Mapserver is using FastCGI via
Apache/mod_fcgi. Spatial indexes on both data sets. Quadtree indexes generated by 'shptree'. No
reprojection required. Minimal styling. Responses are 1-bit PNG images.

1,000 of 10,000 1,000 of 3,000,000

0

50

100

150

200

250

300

350

400

50 4739

386Mapserver

R
e
sp
o
n
se
 t
im
e
 (
m
il
li
se
co
n
d
s)

1,000 of 10,000 1,000 of 3,000,000

0

50

100

150

200

250

300

350

400

42 4227 33

Geoserver

W W W . R E F R A C T I O N S . N E T

Test #2: Concurrent RequestsTest #2: Concurrent Requests

• Using the same tiger roads data set with 10,000

records.

• We issue multiple requests with pseudo-random

BBOXes that fetch approximately 1,000 features.

• The main difference is that now we're issuing

multiple concurrent requests.

Let's see what happened...

W W W . R E F R A C T I O N S . N E T

Test #2: Concurrent RequestsTest #2: Concurrent Requests

Notes: Data in PostGIS and shapefile formats. Mapserver and Geoserver use the same data. Mapserver is
using FastCGI via Apache/mod_fcgi. 20 FastCGI mapserv processes. Geoserver uses connection pooling
with 20 connections. Spatial indexes on both data sets. No reprojection required. Minimal styling.
Responses are 2-color PNG images. More details in the appendix.

1 2 5 10 15 20 40 60

0

200

400

600

800

1000

1200

1400

Mapserver

R
e
sp
o
n
se
 t
im
e
 (
m
il
li
se
c
o
n
d
s)

1 2 5 10 15 20 40 60

0

200

400

600

800

1000

1200

1400

Geoserver

W W W . R E F R A C T I O N S . N E T

... or Throughput, if you prefer... or Throughput, if you prefer

An alternative way to summarize the data
collected for the concurrency test. (Higher lines
are better here.)

1 2 5 10 15 20 40 60

0

10

20

30

40

50

60

70

80

Mapserver Throughput

Concurrent Requests

R
e
sp
o
n
se
s
p
e
r
se
c
o
n
d

1 2 5 10 15 20 40 60

0

10

20

30

40

50

60

70

80
Geoserver Throughput

Concurrent Requests

W W W . R E F R A C T I O N S . N E T

Test #3: ReprojectionTest #3: Reprojection

Currently Mapserver calls PROJ for every

vertex, but it could improve by batching

those into a single call.

None Geog WGS84

– UTM 14N

WGS84

Geog WGS84

– UTM 14N

NAD27

Geog WGS84

– SPS NAD83

UTM 14N

WGS84 - SPS

NAD83

0

10

20

30

40

50

60

70

80

Mapserver (using PROJ to reproject)

R
es

po
ns

e
tim

e
(m

illi
se

co
nd

s)

None Geog WGS84

– UTM 14N

WGS84

Geog WGS84

– UTM 14N

NAD27

Geog WGS84

– SPS NAD83

UTM 14N

WGS84 - SPS

NAD83

0

10

20

30

40

50

60

70

80

Geoserver (using Geotools to reproject)

PROJ optimizes by assuming these source

and target datums are equivalent.

Geotools is slightly faster than

PROJ for these cases.

Geoserver simplifies geometry
before reprojecting.

0
6

22

9 12

0 4

19 21
31

W W W . R E F R A C T I O N S . N E T

CGI vs. FastCGI (Mapserver only)CGI vs. FastCGI (Mapserver only)

CGI FastCGI

0

10

20

30

40

50

60

70

80

90 81

5257

42 PostGIS

Shapefile

R
e
sp
o
n
se
 t
im
e
 (
m
il
li
se
c
o
n
d
s)

Notes: Average of 30 samples. One request at a time (no concurrency). Each request fetches
one layer with 1000 features from a data set of 10,000. Spatial indices on both data sets. No
reprojection required. Minimal styling. Responses are 1-bit PNG images. The same binary file
was used for both CGI and FastCGI. FastCGI through Apache and mod_fcgi.

W W W . R E F R A C T I O N S . N E T

Breakdown of Mapserver Response Breakdown of Mapserver Response

TimeTime

• FastCGI eliminates Start mapserv process and

Connect to DB costs.

• The Write image step is dependant on output format.

PostGIS Shapefile
0

10

20

30

40

50

60

70

80

90

Network delay
Write image
Draw
Fetch & store

Query
Connect to DB
Load map file
Start mapserv
process

Ti
m

e
(in

 m
ill

is
ec

on
ds

)

W W W . R E F R A C T I O N S . N E T

Breakdown of Geoserver Response Breakdown of Geoserver Response

TimeTime

404: Document not found

W W W . R E F R A C T I O N S . N E T

Servlet Container and Java (Geoserver Servlet Container and Java (Geoserver
only)only)

• These results show average response times for the

same WMS request when Geoserver is backed by

different Servlet containers and Java versions.

• Using shapefile backend.

• Conclusion: Use Java 6!

Java 1.4 Java 5 Java 6

0

40

80

120

160

200
179

95

64

Jetty 6.0.2

R
e
sp
o
n
se
 t
im
e
 (
m
il
li
se
c
o
n
d
s)

Java 1.4 Java 5 Java 6

0

40

80

120

160

200

95

63

Tomcat 6.0.14

Tomcat 6
doesn't
support
Java 1.4

W W W . R E F R A C T I O N S . N E T

Outcome of the testsOutcome of the tests

• Lots of performance optimizations to

Geoserver which will be available in version

1.6.

• Identified a few places where Mapserver can

improve too. (These will be reported as

“bugs” as time permits.)

• Both servers can be FAST, but require some

special configuration.

W W W . R E F R A C T I O N S . N E T

The Road to SpeedThe Road to Speed

Start (CGI) Switch to
FastCGI

Re-order
'epsg' file

Output
format

0

200

400

600

800

1000

Mapserver

R
e
sp
o
n
se
 t
im
e
 (
m
il
li
se
c
o
n
d
s)

Start Logging

Off

Transp.

styles

off

Output

format

JVM

settings

Code

change

0

200

400

600

800

1000

Geoserver

All will be in Geoserver 1.6Data sources with high
connection overhead will benefit
much more from FastCGI.

W W W . R E F R A C T I O N S . N E T

Performance Tips (Mapserver)Performance Tips (Mapserver)

• Beware of

PROJECTION

'init=epsg:4326'

END

The “init=” syntax causes one lookup in the PROJ4

'epsg' file for every occurrence in the map file.

(Move your most-used EPSG codes to the top of the

'epsg' file.)

• Use FastCGI instead of ordinary CGI. Instruction

here:

http://mapserver.gis.umn.edu/docs/howto/fastcgi

• Ensure you have enough FastCGI processes.

W W W . R E F R A C T I O N S . N E T

Performance Tips (Geoserver)Performance Tips (Geoserver)

• Geoserver has many features enabled by default. Gain

performance by disabling features you don't need.

– Transparent styles double draw time. Use

opacity=1 in your SLD to disable.

– Antialiasing linework is costly. Try

'&format_options=antialias:none' to disable.

– Experiment with disabling “PNG native

acceleration”

• Favour Java 6 over Java 5 over Java 1.4.

• JVM Settings: Increase heap size. Use -server switch.

• Experiment with different shapefile index depths.

• Turn off logging

W W W . R E F R A C T I O N S . N E T

How can the servers improve?How can the servers improve?

Mapserver

• More efficient scanning

of shapefile quadtree

indexes. [Bug Reported]

• Batch PROJ calls when

doing on-the-fly

reprojection.

• Reduce number of

'epsg' lookups on map

files.

Geoserver

• Various optimizations to

the renderer.
[Fixes Committed]

• More efficient scanning

of shapefile quadtree

index. [Fixes Committed]

W W W . R E F R A C T I O N S . N E T

Questions? Contact Us. Questions? Contact Us.

Brock Anderson:

banders@refractions.net

Justin Deolivera:

jdeolive@openplans.org

W W W . R E F R A C T I O N S . N E T

General WMS Performance Tips General WMS Performance Tips

• Only fetch from your data source the features that will

be drawn, otherwise the servers have to spend time

scanning and discarding the unused ones.

• Output format affects response time. 256 color PNG is

faster to create than PNG24 on both servers.

• On-the-fly reprojection has a price. Store data in the

same projection it's most commonly requested in.

W W W . R E F R A C T I O N S . N E T

AppendixAppendix

Breakdown of Mapserver Response Time

The graph represents mapserv running in CGI mode to show all startup costs. Metrics for “Load map
file”, “Connect to DB”, “Fetch & store”, “Draw” and “Write image” were collected by modifying
source code to capture and log durarions of those operations. “Query” time measured with
PostgreSQL's explain analyze command. “Start mapserv process” + “Network delay” = difference
between response times recorded by JMeter and my custom mapserv logging which recorded the total
time servicing a request.

PostGIS vs Shapefiles

This test uses two different data sets: one with 3,000,000 features, the other with 10,000. Each
request fetches 1000 features by limiting with a 'bbox' WMS parameter. Each bar is an average of 30
samples. One request at a time (no concurrency). Mapserver and Geoserver use the same data.
Mapserver is using FastCGI via Apache/mod_fcgi. Spatial indices on both data sets. The shapefile
indices were generated with 'shptree'. No reprojection required. Minimal styling. Responses are 2-
color PNG images (indexed color).

The unusual Mapserver result for the case of a 3 million record shapefile has been reported to the
Mapserver bug tracker: http://trac.osgeo.org/mapserver/ticket/2282

15ms 15ms
Load map file 3ms 3ms
Connect to DB 14ms n/a
Query 20ms n/a
Fetch 7ms n/a
Draw 11ms 28ms
Write image 8ms 8ms
Network delay 3ms 3ms

PostGIS Shapefile
Start mapserv process

W W W . R E F R A C T I O N S . N E T

AppendixAppendix

Concurrency and Throughput

Notes: Data in PostGIS and shapefile formats. Mapserver and Geoserver use the same data.
Mapserver is using FastCGI via Apache/mod_fcgi. 20 FastCGI mapserv processes. Geoserver uses
connection pooling with 20 connections. Spatial indexes on both data sets. No reprojection required.
Minimal styling. Responses are 2-color PNG images (indexed color). “Concurrent” requests were fired
in bursts with zero ramp up (as near to simultaneously as possible). I.e. For the test of 10 concurrent
requests, all ten requests were fired at the same time. Once all the responses came back then the
next burst of requests went out. Requests use random bboxes which fetch ~1000 features. The same
random bboxes are used against both servers.

1 50 39
2 51 40
5 91 75

10 182 147
15 269 229
20 315 283
40 784 612
60 1269 905

Mapserver (Response times)
PostGIS Shapefile

1 42 27
2 43 30
5 81 47

10 166 103
15 261 162
20 378 252
40 747 514
60 1170 773

Geoserver (Response times)
PostGIS Shapefile

1 19.6 24.9
2 28.2 33.4
5 35.4 51.6

10 38.4 53.8
15 42.5 55
20 42.4 54.1
40 43.2 54.9
60 43.1 51.5

Mapserver (Throughput times)
PostGIS Shapefile

1 24.6 35.6
2 32.3 41.8
5 47.1 68.6

10 49.9 74.1
15 49.2 73.3
20 47.7 68
40 48.3 68
60 47.8 70.7

Geoserver (Throughput times)
PostGIS Shapefile

Response times are measured in
milliseconds. Throughput times
represent responses per second.

The concurrency level is the left-most
column in each table (1, 2, 5, 10, ...).

W W W . R E F R A C T I O N S . N E T

AppendixAppendix

Summary of Geoserver code changes made to improve performance:

• optimized access to the shapefile spatial index (it was reading tiny sections of the file instead of
doing some buffered access)

• figure out the optmimal palette out of the SLD style (when possible, that is, when antialiasing is off)

* don't access the dbf file when not necessary

* avoid unecessary operations, like duplicating over and over the same coordinate[] during rendering
(loading it, generalize, reproject, copy back in the geometry and so on, now the array it's copied just
once)

Raw list of changes here:

http://jira.codehaus.org/secure/ManageLinks.jspa?id=55176

