Diseño e implantación de servicios WMS complejos: Mapas Topográficos

Ma Goretti Calzadilla Medina, Juan Jorge Rosales León, Jose Julio Rodrigo Bello, Juan Miguel Barbero Francisco, Óscar Felipe Luis

¹Responsable Dpto. de Difusión y Asistencia Técnica GRAFCAN gcalzadilla@grafcan.com

Resumen

El documento detalla el proceso de construcción de un servicio OGC complejo como es el Mapa Topográfico 1:1.000 de Canarias.

1 Introducción

Desde el año 2002 el Gobierno de Canarias apostó por la difusión de la información geográfica a través del visor MAPA que tenía la aspiración de convertirse en un referente para la gestión administrativa. De forma paralela al decisivo papel que juega en la gestión territorial y la planificación medioambiental ha venido desempeñando una valiosísima labor de introducción de la cultura geográfica en otros ámbitos de la administración donde el análisis, la planificación y la gestión se ciñen a parámetros estrictamente alfanuméricos. Sin embargo no tiene en la Administración su único destinatario. De cara a la sociedad en general pretende ser una ventana divulgativa de contenidos que interesen a la ciudadanía y un instrumento que permita dar respuesta a la demanda, cada vez más intensa, de transparencia en la gestión. Fue un elemento integrador en una triple vertiente: integra información de orígenes diversos y heterogéneos, promueve la integración y ofrece una visión integrada de la información.

MAPA integra tanto la información de referencia producida por GRAFCAN (cartografías a escala 1:5.000/1:1.000, ortofotos 1:2.000/1:5.000, callejeros, mapas temáticos de vegetación, ocupación de suelo y geológico) como la generada apoyándose en ésta por otras áreas de la Administración y sectores empresariales privados. En resumen la información en MAPA se agrupa en más de 100 vistas. La información está organizada en capas y en muchos casos esas capas se dividen en siete una por islas y muchas de ellas, ej.

Mapas Topográficos, se repiten año tras año. Así pues estamos hablando de unas 8.500 capas de información:

capas de información: GRUPO	N°	1:5.000-1996 EDIFICACIÓN	119
GROFO	CAPAS	1:5.000-1996 HDTFTCACION	92
1:1.000 ALTIMETRÍA	49	1:5.000-1996 WEG. Y USOS SUELO	49
1:1.000 ALTIMETRÍA 1997-2001	49	1:5.000-1996 VEG. 1 USOS SUELO	
1:1.000 ALTIMETRÍA 2003-2004	49		63
1:1.000 ALTIMETRÍA 2007	49	1:5.000-1998 ALTIMETRÍA	49
1:1.000 ALTIMETRÍA 2008	49	1:5.000-1998 EDIFICACIÓN	182
1:1.000 D. ADMINIST. 2003-2004	7	1:5.000-1998 HIDROGRAFÍA	77
1:1.000 D. ADMINISTRATIVA	7	1:5.000-1998 VEG. Y USOS SUELO	42
1:1.000 D. ADMINISTRATIVA 2007	7	1:5.000-1998 VIAL	63
1:1.000 D. ADMINISTRATIVA 2008	7	1:5.000-2002 ALTIMETRÍA	98
1:1.000 EDIFICACIÓN	224	1:5.000-2002 EDIFICACIÓN	364
1:1.000 EDIFICACIÓN 1997-2001	207	1:5.000-2002 HIDROGRAFÍA	154
1:1.000 EDIFICACIÓN 2004	224	1:5.000-2002 VEG. Y USOS SUELO	84
1:1.000 EDIFICACIÓN 2004 1:1.000 EDIFICACIÓN 2007	210	1:5.000-2002 VIAL	126
1:1.000 EDIFICACIÓN 2007	189	1:5.000-2004/05 ALTIMETRÍA	105
		1:5.000-2004/05 EDIFICACIÓN	393
1:1.000 HIDROGRAFÍA	70	1:5.000-2004/05 HIDROGRAFÍA	166
1:1.000 HIDROGRAFÍA 1997-2001	67	1:5.000-2004/05 VEG. USOS SUEL	92
1:1.000 HIDROGRAFÍA 2003.2004	70	1:5.000-2004/05 VIAL	135
1:1.000 HIDROGRAFÍA 2007	63	1:5.000-2007 ALTIMETRÍA	7
1:1.000 HIDROGRAFÍA 2008	63	1:5.000-2007 D. ADMINISTRATIVA	1
1:1.000 VEG. USO SUELO	42	1:5.000-2007 EDIFICACIÓN	24
1:1.000 VEG. USO SUELO 1997-01	42	1:5.000-2007 HIDROGRAFÍA	9
1:1.000 VEG. USO SUELO 2003-04	42	1:5.000-2007 VEG. USOS SUELO	6
1:1.000 VEG. USO SUELO 2007	42	1:5.000-2007 VIAL	8
1:1.000 VEG. USO SUELO 2008	42	1:5.000-2008 ALTIMETRÍA	42
1:1.000 VIAL	84	1:5.000-2008 D. ADMINISTRATIVA	6
1:1.000 VIAL 1997-2001	77	1:5.000-2008 EDIFICACIÓN	144
1:1.000 VIAL 2003-2004	84	1:5.000-2008 HIDROGRAFÍA	54
1:1.000 VIAL 2007	84	1:5.000-2008 VEG. USOS SUELO	36
1:1.000 VIAL 2008	56	1:5.000-2008 VEG. 0303 30EE0	48
1:5.000-1996 ALTIMETRÍA	99	A.P.M.U.N.	33

AGUAS MINERALES	4	INALSA	3
AUNTOS SOCIALES	12	INDUSTRIA	2
BATIMETRIA	9	LÍMITES MUNICIPALES	26
CABILDO - CARRETERAS	9	LINEA ELECTRICA	14
CALIFICACIONES TERRITORIALES	2	MAMB-ATLANTIS	77
CALLEJERO	141	MAMB-CONTAMINACION	6
COMERCIO	3	MAMB-ECOCARTOGRAFICO	200
CONTROL DE CAMBIOS	54	MAMB-EENNPP;LIC;ZEPAS	21
CONTROL DE PLAGAS	3	MAMB-INCENDIOS	5
CORINE LAND COVER	21	MAMB-MAPA DE RUIDOS	113
COSTAS	2	MAMB-RESIDUOS	3
DISTRIBUIDORES-ZONIFICACION	135	MANANTIALES, POZOS, GALERÍAS	3
DIVISIONES CENSALES	32	MAPA DE CULTIVO	10
E.I.E.L.	87	MAPA GEOLÓGICO	42
EDUCACIÓN	35	MAPA GEOTÉCNICO	21
EJE TRANSINSULAR	35	MAPA OCUPACIÓN SUELO 1998	14
ENERGIA	19	MAPA OCUPACIÓN SUELO 2002	15
ENERGIA FOTOVOLTAICA	2	MAPA SOLAR	21
FARO-AGUA	2	MAPA VEGETACION	8
FARO-BASES	2	MINAS	8
FARO-EDIFICACION VIAL	5	PARCELARIO RÚSTICO	42
FARO-ENERGIA	2	PARCELARIO RÚSTICO NO CONC.	21
FARO-PECMAR	41	PARCELARIO URBANO	30
FARO-REFUGIO	1	PARCELARIO URBANO NO CONC.	21
FARO-RIESGO	9	PATRIMONIO	70
FARO-TELECOMUNICACIONES	2	PESCA	2
FARO-TOPONIMIA	3	PLANEAMIENTO	1042
FINCAS REGISTRALES	78	PLANEAMIENTO E0	7
FOTOTECA	375	PLANEAMIENTO E1	18
GANADERÍA	35	PLANEAMIENTO E2	10
GENERALES	35	PLANEAMIENTO P1	14
GLOBAL	8	PLANEAMIENTO P2	6
HACIENDA-VALORACIÓN	9	PLANEAMIENTO P3	2

RED GEODÉSICA-PTOS APOYO	22	 TELEATLAS	105
REDES DE RIEGO	5	TELEFONIA	3
REGISTRO VITÍCOLA	25	TELEVISIÓN CANARIA	4
RESCATE TOPONIMIA	15	TRANSPORTE	8
SANIDAD	2	TURISMO	12
SEDES GOBIERNO	1	UNELCO	5
SENDEROS	3	VALORACIÓN	1
SEÑALES DE TRÁFICO	1	ZEC	2
SIGPAC	14		
SIOSE	17	TOTAL	8.593
SIOSE - OCUPACIÓN SUELO 2006	14		

2 Crear servicios OGC complejos

Cuando nace la IDE de Canarias empezamos a enfrentarnos con el problema de generar servicios OGC que contengan la cantidad de información que existe en MAPA. Fundamentalmente queríamos disponer de servicios que sean útiles y atraer al mayor número de usuarios son, para ello pusimos los mayores esfuerzos en:

- Rendimiento de los servicios (tiempo de respuesta percibido por el usuario)
- Disponibilidad de los servicios.
- Fiabilidad de los contenidos.

Además del software y hardware de IDECanarias, temas que no son objeto de esta presentación, nosotros tenemos una materia prima importantísima y de calidad: **los datos geográficos.** Es por ello que para obtener buenos rendimientos hay que dedicar tiempo y recursos en la correcta preparación de los datos antes de su publicación en la IDE. Sobre todo la preparación es especialmente importante en capas vectoriales con gran número de elementos que pueden suponer una sobrecarga importante para los servidores de mapas. Podemos resumir las estrategias seguidas durante la fase de preparación de datos en los siguientes puntos:

- 1. Elección y estructuración de las capas de información en el servicio.
- 2. Generación de índices espaciales.
- 3. Definición capas con su simbología
- 4. Generalización y escalas de visualización de los datos
- 5. Análisis de rendimientos.
- 6. Creación de caches

Vamos a ver cómo hemos configurado para MapServer uno de los servicios más complejos en IDECanarias que es el **Mapa Topográfico 1:1.000**.

2.1 Estructuración de las capas de información en el servicio.

El Mapa Topográfico 1:1.000 no cubre las zonas urbanas del territorio en Canarias. Por tanto el servicio debe mostrar en las zonas no urbanas el Mapa Topográfico 1:5.000 por lo que el número de capas aumenta. En total las capas consideradas para el servicio tanto para el 1.1000 como para el 5.000 son:

1	Cota de curva de nivel directora
2	Curva de nivel directora (lineal)
3	Línea hipsográfica (lineal)
4	Curva de nivel intermedia (lineal)
5	Texto de orografía
6	Símbolo de punto acotado
7	Texto de punto acotado
8	Eje de barranco (lineal)
9	Barranco (recinto)
10	Texto de barranco
11	Construcción de hidrografía (lineal)
12	
13	Construcciones de hidrografía (recinto) Costa (lineal)
14	Texto de hidrografía
15	Textos de hidrografia Textos marítimos
_	
16	Símbolo de hidrografía Texto de áreas
18	
_	Cerramientos (lineal)
19	Complejo de instalaciones (recinto)
20	Texto de complejo
21	Construcciones (lineal)
22	Construcciones (recinto)
23	Etiqueta de uso o destino de construcción
24	Cota de edificación
25	Línea decorativa complementaria (lineal)
26	Edificación (recinto)
27	Conducción eléctrica y telecomunicaciones (lineal)
28	Símbolo de conducción eléctrica y telecomunicaciones
29	Etiquetas de conducciones eléctricas y telecomunicaciones
30	Invernaderos
31	Manzana cartográfica (recinto)
32	Muro, bancal (lineal)
33	Número de plantas
34	Otras construcciones (recinto)
35	Patio y lucernario (recinto)
36	Edificio o construcción en ruinas o en construcción (recinto)
37	Etiqueta de edificio o construcción en ruinas o en construcción
38	Símbolo de construcción
39	Edificio o construcción singular (recinto)

40	Texto de edificio o construcción singular
41	Conducciones y tuberías (lineal)
42	Recinto de suelo urbano
43	Etiqueta de suelo urbano
44	Texto construcciones viales
45	Isletas (recinto)
46	Línea de vial (lineal)
47	Calle o vial no visto (recinto)
48	Símbolo de PK
49	Texto de PK
50	Calle o vial (recinto)
51	Texto de vial
52	Zona arbolada (recinto)
53	Etiqueta zona arbolada y delimitada
54	Zona delimitada (recinto)
55	Línea de suelo rústico (lineal)

Estas capas (actualmente ficheros shapefile) se han extraído y generado y agrupado partiendo del modelo de datos de la cartografía. Internamente cada una de ellas tiene la codificación necesaria para su representación (tipos de elementos) y para poder ofrecer información de atributos asociada a cada elemento. Se agrupan en cinco grandes grupos:

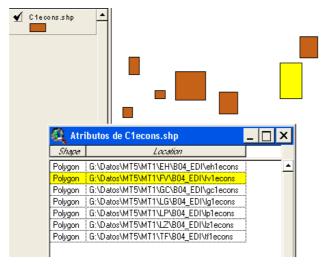
Altimetría

Viales

Hidrografía

Vegetación

• Edificación


Y a su vez están divididas por isla. Estamos hablando por tanto de 7x55 = 385 capas para el 5.000 y 385 capas para el 1.000. En total vamos a montar un servicio de cartografía con 770 capas de información. Además también necesitamos la capa de delimitación de las zonas 1:1.000 como distribuidor que muestre al usuario final la división de escalas en el territorio.

2.2 Generación de índices espaciales

El servicio contiene dos tipos de índices:

• Índices o tiles de ficheros para poder localizar las capas de cada isla. Al tener los mismos ficheros repetidos por isla, se han generado ficheros shapefile con la extensión de cada fichero por isla de manera que el fichero contiene un campo que indica la ruta de dónde encontrar la capa de cada isla. Por ejemplo, para la capa de Construcciones se ha generado el fichero c1econs.shp que contiene 7 recintos con el ámbito de las construcciones de cada isla. Cada recinto tiene una ruta asociada en el campo Location del dbf que indica dónde está el fichero de construcciones para la isla.

De esta forma en el fichero .map no es necesario definir siete veces la capa de construcciones sino utilizar las directivas

TILEINDEX "clecons"

TILEITEM "location"

Y el servidor sabrá encontrar la capa que corresponda en cada momento. A su vez estas capas espaciales también se han organizado en los mismos cinco grupos que las capas de cartografía. En total tenemos 36 tileindex para el Mapa Topográfico 5.000 y 40 para el 1.000. Cada fíchero tileindex contiene la dirección de la capa según la isla. En la presentación gráficamente se entiende mejor la forma de indexar las capas.

 Por otra parte las capas y los ficheros tileindex llevan asociado el índice espacial de MapServer (extensión qix) que mejorará la velocidad en la navegación.

2.3 Definición de capas con su simbología

Para cada capa se han tenido que definir las simbologías más adecuadas en MapServer, dependiendo de las geometrías (puntos, líneas, polígonos, textos). Se han definido todas

las simbologías de las capas del Mapa topográfico 1:5.000, luego las de Mapa Topográfico 1:1.000 procurando no hacer uso de símbolos complejos e intentando siempre obtener la mejor eficacia en cuanto a los tiempos de representación.

2.4 Generalización y escalas de visualización de los datos

A la hora de presentar la información, la generalización cartográfica permite construir un mapa más claro y representativo para el usuario, eliminando los detalles superfluos o innecesarios a determinada escala. Las técnicas de generalización permiten reducir la cantidad de datos, minimizando así el tiempo de espera en la visualización del mapa y evitando sobrecargar los recursos. El nivel de generalización debe variar en función de la escala, es decir, el contenido del mapa deberá ser reducido a aquello que es necesario y posible representar en función de los cambios de escala. Por ejemplo, en un mapa a escala 1:100.000 no podemos mantener todos los detalles que se representarían con una escala 1:10.000 pues la densidad gráfica aumentaría exageradamente. La generalización cartográfica es una de las tareas más complejas que existen en la generación de mapas, además de consumir una gran cantidad de tiempo y recursos

Sin embargo, aunque se reduzca la complejidad de los datos espaciales, estos deben mantener la misma estructura que proporcionan los datos originales, es decir, la aplicación final debe ser capaz de extraer la misma información tanto a partir de los datos fuentes como de los simplificados. En el Mapa topográfico 1:1.000, se han generalizado algunas capas como Curvas de Nivel, topónimos, recintos de hidrografía, etc.


En cuanto a las escalas de visualización se ha tenido en cuenta primero el Mapa topográfico 1:5.000 hasta la escala 4.000 y a partir de ahí comienza a mostrarse el Mapa 1:1.000. Al ser el Mapa 1:5.000 continuo en todo el territorio, se ha empleado la capa de recintos de zonas urbanas donde existe cartografía 1;1.000 para "superponer" sobre el 5.000 y mostrar el 1.000 en dichas zonas jugando con la transparencia que ofrece el servidor.

2.5 Generación de cachés y análisis de rendimientos

El servicio de Mapa Topográfico 1:5.000 y el de Mapa topográfico 1:1.000 cuenta con un motor de caché que permite mejorar considerablemente los rendimientos con todos aquellos clientes que trabajen con teselas. Ya hemos hablado en otras ediciones de estas Jornadas del motor de caché y no voy a extenderme más en esto.

Resultados

Hemos creado un servicio WMS que cuenta con más de 700 capas de información estructuradas y procesadas de tal forma que obtenemos unos rendimientos muy buenos del orden de centésimas de segundos en los tiempos de respuesta.

Servicio WMS de Mapa Topográfico 1:1.000 (Zona señalada)

Servicio WMS de Mapa Topográfico 1:1.000